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1 Accelerate Gradient Descent

What is the fastest convergence speed of an optimization algorithm? We should know the lower bound

O(T*) < f(xT) = f* < O(T”).
Then the optimal convergence speed is O(T%).

Theorem 1 [Nesterov, 1998] Let T < ”T_l, B > 0. Then there exists a B-smooth convex quadratic f such
that any black-box method stasifies

min f(xt) _ f* > 3/8||X0 - X*”2

1< 32(1 + 72 (1)

This means we have a chance to make an algorithm to achieve the convergence rate O(T~2).

This is called the accelerate (proximal) gradient descent algorithm:

Initial: y' =x%a; =1 and t = 1.

e Step 1:
1 1

x'=y' - Evf(yt) or x' = prowgs(y" — BVf(yt))- (2)

e Step 2:
1+ /1+ 4a?

at+1 = - 5 (3)

e Step 3:
-1
yt+1 = xt+ ag (Xt . Xt—l). (4)
A1 N —
momentum

Let us recall the inequality Theorem, take v = 1/8 and change the position of x and y. We obtain the
following proposition.

Proposition 1
B
h(x) > h(x") + Bly —=x",x —y) + Slly =%, ()

where X+ = prozys(y — 1/8V(y)) = argming { Sl1x — (y = 1/8Vf(v)) |2 + 9(x) } .

Lemma 1 For any vector a,b, it has

la]l* + [Ibl|* + 2(a, b) = [Jal|* + [|b||* + 2[|a][[[b]| cos < a,b >= [|a + b]|*. (6)



Lemma 2 Let {c;,b:} be positive sequences of reals satisfying c; — ciy1 > bep1 — by for any t > 1, with
c1+by<ec,ec>0, thenc < ¢, Vt > 1.

Proof 1 By induction.
Lemma 3 The sequences {x!,y'} generated via FISTA with the constant step size 1/, then for everyt > 1,
B
a{vp = a7 41 V1 > g(llumll2 = [lu’[?), (7)

where v, = h(x') — h* and u* = a;x* — (a; — 1)x' =1 — x*.

Proof 2 Based on (5), let x = x!,y = y'™1, then xT = x!*1. So,

p
Bx) > A(xH) 4 Byt - x gt 4yt
That is 5
h(Xt) —_ h* > h(XtJrl) — h* + B<yt+1 o Xt+1’xt o yt+1> + 5”ytJrl _ Xt+1||2,

and 5

50— o) 2 2y = xx! -y ) 4yt - X2 (8)
By the same way, let x = x*,y = y'*1 in (5), it has

2
_ th-i-l 2 2<yt+1 _ Xt+1,X* _ yt+1> 4 Hyt+1 _ Xt+1H2' (9)

Let Eq.(8)x(at+1 — 1)+Eq.(9), we have

2 ®
(a1 — Vv — apgrveg] > 20—y gy = (ag — DX = xF) +apally™ - xR (10)

g
In addition, Step 2 of FASTA in (3) says that

ajyq — i1 = aj. (11)
Thus, Fq.(10)Xa;41 with Lemma 1 is
2
B[afvt = apvea] > 2 =y ey - afx! =) +agy [y - x TP (12)
> [lapiix™ = (arp1 — Dx" = x| + [lagpay™ = (a0 - Dx' = x*|* - (13)
= a2 — fuf%. (14)

Theorem 2 [Beck and Teboulle, 2009] Let {xt,y'} be generated by AGD or FISTA. Then for any T > 1,

28||x° — x|

h(xT) - h* < 15
Proof 3 According Lemma 2, let ¢; = Zajvy, by = |[0'|?, and ¢ = [ly" —x*||* = [|x° — x*||*. Then Lemma
3 implies ¢ — 41 > b1 — by
Furthermore, let x = x*,y = y! in (5), then
. s .
B —h(x') > Slx' =y P+ Byt x5 x' -y
s . .
= O =2 — ! — 2.



This indicates c1 + by < ¢, where ¢; = %vl and by = ||x! — x*||2. Thus, for any T > 0, it has

0 *||2
x? —x
< P -]
ar
By the induction method, we have justify that a; > %,Vt > 1. So,

1 2ﬁHXO X*||2
Y SO A L |
h(x')—h a E

2 Newton-Raphson Method

2.0.1 Motivation

Think about what GD is? Let us consider the first order Taylor approximation of f(x + d) around at x is
fx+d) = f(x) +(V[f(x).d).

We need f(x+d) < f(x), so the quantity of (V f(x),d) should be as negative as possible, then

d, = argmin{(V£(x),d), |d] < 1}. ()
Based on Cauchy inequality, it has df = _%SI)\' We generalized this idea to the second-order Taylor

approximation of f(x + d) around x is
Foc+d) = () + (V). d) + 5T 2/ (x)d,
So the quantity of (Vf(x),d) + 2d " V2f(x)d should be as negative as possible, then
d; = argmin{(Vf(x),d) + %dTVQf(X)d}. (18)
Thus, d* should be the solution of the following Newton FEquation,

Vif(x)d = -V f(x). (19)

If V2f(x) = 0, then di = —(V2f(x)) "1V f(x) is called Newton direction.

2.0.2 Algorithm

The Newton-Raphson Algorithm is

d' = —(V2f(x") 7'V,

xitt = xt + d°.

Actually, in numerical analysis, Newton’s method, also known as the Newton—Raphson method, named
after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better
approximations to the roots (or zeroes) of a real-valued function. In the optimization community, which root
is to find by Newton-Raphson algorithm?

Let us consider the unconstrained optimization problem, and its optimality condition says that the local
minimum satisfies V f(x) = 0. So, we need to solve the equation g(x) := V f(x) = 0. How to do? See Figure
1. That is,



f(x)

-
_..f"‘/ !z’ Xn+2 7 Xnsl Xn X

F
!

Figure 1: Newton-Raphson algorithm

g(x") + (Vg(x"),x — x") = 0, (Secant Equation),
VF(xh + (V2 f(x'),x —x') =0.
So, x" =x' — (V2f(x")) 'V f(x").

Example 1 Go back to LS problem,
min %”AX —b|%
The NR algorithm is
X = (V2 7)) ()
=x! —(ATA)1AT(Ax! —Db)
=x'—x'+(AT4A)ATDb
= (ATA)TATb = x".

2.1 Convergence

Theorem 3 Suppose that f € C? and Vf(x*) =0 and V2 f(x*) = 0. In addition, there exsits an neighbor-
hood of x*, N5(x*) such that

IV2f(x) = V2 f(y)| < Lllx —yl,vx,y € Ns(x*), (20)
then

(1) limy_y0o X' = x* where {x'}32, is generated by Newton-Raphson iteration algorithm.
(2) there exists a constant ¢ such that

I — x| < effx’ — x|,



(8) there exists a constant ¢’ such that

IVFEFHI < IVFED]™

Proof 4 According to the fact

1
V) - V(x') = / V2F(x + s(x* — x1))(x! — x")ds,

0

it has

X = x* = xt = (V2f(x)) IV f(x) = x°
— (V2 F(x) (V2 (x! = x7) = V(x')
— (V2F(x) " (V2F () (! —x7) = (VF(x) = VF(x"))

1
= (sz(xt))’l/ (V2f(x") = V2f(x" + s(x" = x)))(x" —x")ds.
0

By the continuity of V2f, there exist a constant v such that for any x € (f) satisfies |x — x*|| < r, then
(727 6e)) 1 = 272 6c)) M- Thus, when [x° = x| < ming6,, pyompbeyry 1 then

I+ = < 727G / V276 = V27! + s(x” = x) = s

< 2(V () / St — x*|ds
= LI(V2f(x") 7 x" = x*1%.
For the gradient,
IV = VT = V') = V2 (x)d|
= /Ol(sz(xt +sd') — V2 f(x"))d ds|

< Dt < IR PIv s P
< 2LV () IV TP

Remark 1 (1) x! — x* is extremely fast, quadratic convergence rate.
(2) We need a very good x°.
(3) V2f(x*) = 0.

(4) Every step we need compute a Newton equation. When n is really big, we cannot afford the computa-
tional complexity.

(5) f(xtT1) < f(x!)#2? The algorithm is not stable (not decreasing).

In Example 1, we have seen that Newton-Raphson is extremely fast for strongly convex LS problem. When-
ever the initial point is close to x* or not, one can archive the global minimum by one step. In this part,
we will discuss the convergence property of NR-algorithm with line search for general a-strongly convex and
[B-smooth objective function.

NR-Algorithm with line search as follows:



Algorithm 1 Newton-Raphson Algorithm with Line Search

1: Input: Given a initial starting point x° € dom(f), a tolerance e and t = 0. Let A7 = Vf(x*) T (V2 f(x))) "'V f(x")
be the Newton decrement at x*.

2: while \?/2 > ¢ do

3:  Backtracking line search a step size s; such that

Fx' 4 sid’) < F(x') + es VF(x') T,

where 0 < ¢ < 1 and d" = (V2 f(x")) "'V f(x"),
Xt = xt 4 s,dt,
t:=t+1.

end while

. Output: xT, where T is the last step index.

Theorem 4 Suppose that f is a-strongly conver and B-smooth function, and

IV2f(y) = V2f(y)ll < Llly — ||, ¥x,y € dom(f).

Then, there exists numbers np and v with 0 <n < a/y and v > 0 such that the following arguments hold:

(1) If V£ =,
FET = f(x') < - (21)

(2) If |V f(xY)|| < n, then the backtracking line search selects sy = 1, and
L L
a5 < (5 1976P) (22)

Proof 5 Please see Page 489 of [Boyd et al., 2004].
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