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1 Accelerate Gradient Descent

What is the fastest convergence speed of an optimization algorithm? We should know the lower bound

O(T s) ≤ f(xT )− f∗ ≤ O(T s).

Then the optimal convergence speed is O(T s).

Theorem 1 [Nesterov, 1998] Let T ≤ n−1
2 , β > 0. Then there exists a β-smooth convex quadratic f such

that any black-box method stasifies

min
1≤t≤T

f(xt)− f∗ ≥ 3β‖x0 − x∗‖2

32(1 + T )2
. (1)

This means we have a chance to make an algorithm to achieve the convergence rate O(T−2).

This is called the accelerate (proximal) gradient descent algorithm:

• Initial: y1 = x0, a1 = 1 and t = 1.

• Step 1:

xt = yt − 1

β
∇f(yt) or xt = proxg/β(yt − 1

β
∇f(yt)). (2)

• Step 2:

at+1 =
1 +

√
1 + 4a2t
2

. (3)

• Step 3:

yt+1 = xt +
at − 1

at+1
(xt − xt−1)︸ ︷︷ ︸
momentum

. (4)

Let us recall the inequality Theorem, take γ = 1/β and change the position of x and y. We obtain the
following proposition.

Proposition 1

h(x) ≥ h(x+) + β〈y − x+,x− y〉+
β

2
‖y − x+‖2, (5)

where x+ = proxg/β(y − 1/β∇f(y)) = arg minx

{
β
2 ‖x− (y − 1/β∇f(y))‖2 + g(x)

}
.

Lemma 1 For any vector a,b, it has

‖a‖2 + ‖b‖2 + 2〈a,b〉 = ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖ cos < a,b >= ‖a + b‖2. (6)
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Lemma 2 Let {ct, bt} be positive sequences of reals satisfying ct − ct+1 ≥ bt+1 − bt for any t ≥ 1, with
c1 + b1 ≤ c, c > 0, then ct ≤ c,∀t ≥ 1.

Proof 1 By induction.

Lemma 3 The sequences {xt,yt} generated via FISTA with the constant step size 1/β, then for every t ≥ 1,

a2t vt − a2t+1vt+1 ≥
β

2
(‖ut+1‖2 − ‖ut‖2), (7)

where vt = h(xt)− h∗ and ut = atx
t − (at − 1)xt−1 − x∗.

Proof 2 Based on (5), let x = xt,y = yt+1, then x+ = xt+1. So,

h(xt) ≥ h(xt+1) + β〈yt+1 − xt+1,xt − yt+1〉+
β

2
‖yt+1 − xt+1‖2.

That is

h(xt)− h∗ ≥ h(xt+1)− h∗ + β〈yt+1 − xt+1,xt − yt+1〉+
β

2
‖yt+1 − xt+1‖2,

and
2

β
(vt − vt+1) ≥ 2〈yt+1 − xt+1,xt − yt+1〉+ ‖yt+1 − xt+1‖2. (8)

By the same way, let x = x∗,y = yt+1 in (5), it has

− 2

β
vt+1 ≥ 2〈yt+1 − xt+1,x∗ − yt+1〉+ ‖yt+1 − xt+1‖2. (9)

Let Eq.(8)×(at+1 − 1)+Eq.(9), we have

2

β
[(at+1 − 1)vt − at+1vt+1] ≥ 2〈xt+1 − yt+1, at+1y

t+1 − (at+1 − 1)xt − x∗〉+ at+1‖yt+1 − xt+1‖2. (10)

In addition, Step 2 of FASTA in (3) says that

a2t+1 − at+1 = a2t . (11)

Thus, Eq.(10)×at+1 with Lemma 1 is

2

β
[a2t vt − a2t+1vt+1] ≥ 2〈xt+1 − yt+1, a2t+1y

t+1 − a2txt − x∗〉+ a2t+1‖yt+1 − xt+1‖2 (12)

≥ ‖at+1x
t+1 − (at+1 − 1)xt − x∗‖2 + ‖at+1y

t+1 − (at+1 − 1)xt − x∗‖2 (13)

= ‖ut+1‖2 − ‖ut‖2. (14)

Theorem 2 [Beck and Teboulle, 2009] Let {xt,yt} be generated by AGD or FISTA. Then for any T ≥ 1,

h(xT )− h∗ ≤ 2β‖x0 − x∗‖2

(1 + T )2
. (15)

Proof 3 According Lemma 2, let ct = 2
βa

2
t vt, bt = ‖ut‖2, and c = ‖y1 − x∗‖2 = ‖x0 − x∗‖2. Then Lemma

3 implies ct − ct+1 ≥ bt+1 − bt.

Furthermore, let x = x∗,y = y1 in (5), then

h∗ − h(x1) ≥ β

2
‖x1 − y1‖2 + β〈y1 − x∗,x1 − y1〉

=
β

2
(‖x1 − x∗‖2 − ‖y1 − x∗‖2).
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This indicates c1 + b1 ≤ c, where c1 = 2
β v1 and b1 = ‖x1 − x∗‖2. Thus, for any T > 0, it has

vT ≤
β‖x0 − x∗‖2

2a2T
. (16)

By the induction method, we have justify that at ≥ t+1
2 ,∀t ≥ 1. So,

h(xT )− h∗ ≤ 2β‖x0 − x∗‖2

(1 + T )2
.

2 Newton-Raphson Method

2.0.1 Motivation

Think about what GD is? Let us consider the first order Taylor approximation of f(x + d) around at x is

f(x + d) ≈ f(x) + 〈∇f(x),d〉.

We need f(x + d) ≤ f(x), so the quantity of 〈∇f(x),d〉 should be as negative as possible, then

d∗x = arg min{〈∇f(x),d〉, ‖d‖ ≤ 1}. (17)

Based on Cauchy inequality, it has d∗x = −∇f(x)‖f(x)‖ . We generalized this idea to the second-order Taylor

approximation of f(x + d) around x is

f(x + d) ≈ f(x) + 〈∇f(x),d〉+
1

2
d>∇2f(x)d.

So the quantity of 〈∇f(x),d〉+ 1
2d
>∇2f(x)d should be as negative as possible, then

d∗x = arg min{〈∇f(x),d〉+
1

2
d>∇2f(x)d}. (18)

Thus, d∗ should be the solution of the following Newton Equation,

∇2f(x)d = −∇f(x). (19)

If ∇2f(x) � 0, then d∗x = −(∇2f(x))−1∇f(x) is called Newton direction.

2.0.2 Algorithm

The Newton-Raphson Algorithm is

dt = −(∇2f(xt))−1∇f(xt),

xt+1 = xt + dt.

Actually, in numerical analysis, Newton’s method, also known as the Newton–Raphson method, named
after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better
approximations to the roots (or zeroes) of a real-valued function. In the optimization community, which root
is to find by Newton-Raphson algorithm?

Let us consider the unconstrained optimization problem, and its optimality condition says that the local
minimum satisfies ∇f(x) = 0. So, we need to solve the equation g(x) := ∇f(x) = 0. How to do? See Figure
1. That is,
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Figure 1: Newton-Raphson algorithm

g(xt) + 〈∇g(xt),x− xt〉 = 0, (Secant Equation),

∇f(xt) + 〈∇2f(xt),x− xt〉 = 0.

So, xt+1 = xt − (∇2f(xt))−1∇f(xt).

Example 1 Go back to LS problem,

min
x

1

2
‖Ax− b‖2.

The NR algorithm is

xt+1 = xt − (∇2f(xt))−1∇f(xt)

= xt − (A>A)−1A>(Axt − b)

= xt − xt + (A>A)−1A>b

= (A>A)−1A>b := x∗.

2.1 Convergence

Theorem 3 Suppose that f ∈ C2 and ∇f(x∗) = 0 and ∇2f(x∗) � 0. In addition, there exsits an neighbor-
hood of x∗, Nδ(x∗) such that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖,∀x,y ∈ Nδ(x∗), (20)

then

(1) limt→∞ xt = x∗ where {xt}∞t=1 is generated by Newton-Raphson iteration algorithm.

(2) there exists a constant c such that

‖xt+1 − x∗‖ ≤ c‖xt − x∗‖2.
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(3) there exists a constant c′ such that

‖∇f(xt+1)‖ ≤ c′‖∇f(xt)‖2.

Proof 4 According to the fact

∇f(xt)−∇f(x∗) =

∫ 1

0

∇2f(xt + s(x∗ − xt))(xt − x∗)ds,

it has

xt+1 − x∗ = xt − (∇2f(xt))−1∇f(xt)− x∗

= (∇2f(xt))−1(∇2f(xt)(xt − x∗)−∇f(xt))

= (∇2f(xt))−1(∇2f(xt)(xt − x∗)− (∇f(xt)−∇f(x∗)))

= (∇2f(xt))−1
∫ 1

0

(∇2f(xt)−∇2f(xt + s(x∗ − xt)))(xt − x∗)ds.

By the continuity of ∇2f , there exist a constant r such that for any x ∈ (f) satisfies ‖x − x∗‖ ≤ r, then
‖(∇2f(x))−1‖ ≤ 2‖(∇2f(x∗))−1‖. Thus, when ‖x0 − x∗‖ ≤ min{δ, r, 1

2L‖∇2f(x∗))−1‖}, then

‖xt+1 − x∗‖ ≤ ‖(∇2f(xt))−1‖
∫ 1

0

‖∇2f(xt)−∇2f(xt + s(x∗ − xt))‖‖xt − x∗‖ds

≤ 2‖(∇2f(x∗))−1‖
∫ 1

0

sL‖xt − x∗‖2ds

= L‖(∇2f(x∗))−1‖xt − x∗‖2.

For the gradient,

‖∇f(xt+1)‖ = ‖∇f(xt+1)−∇f(xt)−∇2f(xt)dt‖

= ‖
∫ 1

0

(∇2f(xt + sdt)−∇2f(xt))dtds‖

≤ L

2
‖dt‖2 ≤ L

2
‖(∇2f(xt))−1‖2‖∇f(xt)‖2

≤ 2L‖(∇2f(x∗))−1‖2‖∇f(xt)‖2.

Remark 1 (1) xt → x∗ is extremely fast, quadratic convergence rate.

(2) We need a very good x0.

(3) ∇2f(x∗) � 0.

(4) Every step we need compute a Newton equation. When n is really big, we cannot afford the computa-
tional complexity.

(5) f(xt+1) ≤ f(xt)??? The algorithm is not stable (not decreasing).

In Example 1, we have seen that Newton-Raphson is extremely fast for strongly convex LS problem. When-
ever the initial point is close to x∗ or not, one can archive the global minimum by one step. In this part,
we will discuss the convergence property of NR-algorithm with line search for general α-strongly convex and
β-smooth objective function.

NR-Algorithm with line search as follows:
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Algorithm 1 Newton-Raphson Algorithm with Line Search

1: Input: Given a initial starting point x0 ∈ dom(f), a tolerance ε and t = 0. Let λ2
t = ∇f(xt)>(∇2f(xt))−1∇f(xt)

be the Newton decrement at xt.
2: while λ2

t/2 ≥ ε do
3: Backtracking line search a step size st such that

f(xt + std
t) ≤ f(xt) + cst∇f(xt)>dt,

where 0 < c < 1 and dt = (∇2f(xt))−1∇f(xt),
4: xt+1 = xt + std

t,
5: t := t+ 1.
6: end while
7: Output: xT , where T is the last step index.

Theorem 4 Suppose that f is α-strongly convex and β-smooth function, and

‖∇2f(y)−∇2f(y)‖ ≤ L‖y − x‖,∀x,y ∈ dom(f).

Then, there exists numbers η and γ with 0 < η ≤ α/γ and γ > 0 such that the following arguments hold:

(1) If ‖∇f(xt)‖ ≥ η,
f(xt+1)− f(xt) ≤ −γ; (21)

(2) If ‖∇f(xt)‖ ≤ η, then the backtracking line search selects st = 1, and

L

2α2
‖∇f(xt+1)‖ ≤

(
L

2α2
‖∇f(xt)‖2

)
. (22)

Proof 5 Please see Page 489 of [Boyd et al., 2004].
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