Lecture 14

Lecturer:Xiangyu Chang
Scribe: Xiangyu Chang
Edited by: Xiangyu Chang

1 Accelerate Gradient Descent

What is the fastest convergence speed of an optimization algorithm? We should know the lower bound

$$
O\left(T^{s}\right) \leq f\left(\mathbf{x}^{T}\right)-f^{*} \leq O\left(T^{s}\right)
$$

Then the optimal convergence speed is $O\left(T^{s}\right)$.

Theorem 1 [Nesterov, 1998] Let $T \leq \frac{n-1}{2}, \beta>0$. Then there exists a β-smooth convex quadratic f such that any black-box method stasifies

$$
\begin{equation*}
\min _{1 \leq t \leq T} f\left(\mathbf{x}^{t}\right)-f^{*} \geq \frac{3 \beta\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{32(1+T)^{2}} \tag{1}
\end{equation*}
$$

This means we have a chance to make an algorithm to achieve the convergence rate $O\left(T^{-2}\right)$.
This is called the accelerate (proximal) gradient descent algorithm:

- Initial: $\mathbf{y}^{1}=\mathbf{x}^{0}, a_{1}=1$ and $t=1$.
- Step 1:

$$
\begin{equation*}
\mathbf{x}^{t}=\mathbf{y}^{t}-\frac{1}{\beta} \nabla f\left(\mathbf{y}^{t}\right) \text { or } \mathbf{x}^{t}=\operatorname{prox}_{g / \beta}\left(\mathbf{y}^{t}-\frac{1}{\beta} \nabla f\left(\mathbf{y}^{t}\right)\right) \tag{2}
\end{equation*}
$$

- Step 2:

$$
\begin{equation*}
a_{t+1}=\frac{1+\sqrt{1+4 a_{t}^{2}}}{2} \tag{3}
\end{equation*}
$$

- Step 3:

$$
\begin{equation*}
\mathbf{y}^{t+1}=\mathbf{x}^{t}+\frac{a_{t}-1}{a_{t+1}} \underbrace{\left(\mathbf{x}^{t}-\mathbf{x}^{t-1}\right)}_{\text {momentum }} . \tag{4}
\end{equation*}
$$

Let us recall the inequality Theorem, take $\gamma=1 / \beta$ and change the position of \mathbf{x} and \mathbf{y}. We obtain the following proposition.

Proposition 1

$$
\begin{equation*}
h(\mathbf{x}) \geq h\left(\mathbf{x}^{+}\right)+\beta\left\langle\mathbf{y}-\mathbf{x}^{+}, \mathbf{x}-\mathbf{y}\right\rangle+\frac{\beta}{2}\left\|\mathbf{y}-\mathbf{x}^{+}\right\|^{2}, \tag{5}
\end{equation*}
$$

where $\mathbf{x}^{+}=\operatorname{prox}_{g / \beta}(\mathbf{y}-1 / \beta \nabla f(\mathbf{y}))=\arg \min _{\mathbf{x}}\left\{\frac{\beta}{2}\|\mathbf{x}-(\mathbf{y}-1 / \beta \nabla f(\mathbf{y}))\|^{2}+g(\mathbf{x})\right\}$.
Lemma 1 For any vector \mathbf{a}, \mathbf{b}, it has

$$
\begin{equation*}
\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}+2\langle\mathbf{a}, \mathbf{b}\rangle=\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}+2\|\mathbf{a}\|\|\mathbf{b}\| \cos <\mathbf{a}, \mathbf{b}>=\|\mathbf{a}+\mathbf{b}\|^{2} \tag{6}
\end{equation*}
$$

Lemma 2 Let $\left\{c_{t}, b_{t}\right\}$ be positive sequences of reals satisfying $c_{t}-c_{t+1} \geq b_{t+1}-b_{t}$ for any $t \geq 1$, with $c_{1}+b_{1} \leq c, c>0$, then $c_{t} \leq c, \forall t \geq 1$.

Proof 1 By induction.

Lemma 3 The sequences $\left\{\mathbf{x}^{t}, \mathbf{y}^{t}\right\}$ generated via FISTA with the constant step size $1 / \beta$, then for every $t \geq 1$,

$$
\begin{equation*}
a_{t}^{2} v_{t}-a_{t+1}^{2} v_{t+1} \geq \frac{\beta}{2}\left(\left\|\mathbf{u}^{t+1}\right\|^{2}-\left\|\mathbf{u}^{t}\right\|^{2}\right) \tag{7}
\end{equation*}
$$

where $v_{t}=h\left(\mathbf{x}^{t}\right)-h^{*}$ and $\mathbf{u}^{t}=a_{t} \mathbf{x}^{t}-\left(a_{t}-1\right) \mathbf{x}^{t-1}-\mathbf{x}^{*}$.
Proof 2 Based on (5), let $\mathbf{x}=\mathbf{x}^{t}, \mathbf{y}=\mathbf{y}^{t+1}$, then $\mathbf{x}^{+}=\mathbf{x}^{t+1}$. So,

$$
h\left(\mathbf{x}^{t}\right) \geq h\left(\mathbf{x}^{t+1}\right)+\beta\left\langle\mathbf{y}^{t+1}-\mathbf{x}^{t+1}, \mathbf{x}^{t}-\mathbf{y}^{t+1}\right\rangle+\frac{\beta}{2}\left\|\mathbf{y}^{t+1}-\mathbf{x}^{t+1}\right\|^{2}
$$

That is

$$
h\left(\mathbf{x}^{t}\right)-h^{*} \geq h\left(\mathbf{x}^{t+1}\right)-h^{*}+\beta\left\langle\mathbf{y}^{t+1}-\mathbf{x}^{t+1}, \mathbf{x}^{t}-\mathbf{y}^{t+1}\right\rangle+\frac{\beta}{2}\left\|\mathbf{y}^{t+1}-\mathbf{x}^{t+1}\right\|^{2}
$$

and

$$
\begin{equation*}
\frac{2}{\beta}\left(v_{t}-v_{t+1}\right) \geq 2\left\langle\mathbf{y}^{t+1}-\mathbf{x}^{t+1}, \mathbf{x}^{t}-\mathbf{y}^{t+1}\right\rangle+\left\|\mathbf{y}^{t+1}-\mathbf{x}^{t+1}\right\|^{2} \tag{8}
\end{equation*}
$$

By the same way, let $\mathbf{x}=\mathbf{x}^{*}, \mathbf{y}=\mathbf{y}^{t+1}$ in (5), it has

$$
\begin{equation*}
-\frac{2}{\beta} v_{t+1} \geq 2\left\langle\mathbf{y}^{t+1}-\mathbf{x}^{t+1}, \mathbf{x}^{*}-\mathbf{y}^{t+1}\right\rangle+\left\|\mathbf{y}^{t+1}-\mathbf{x}^{t+1}\right\|^{2} \tag{9}
\end{equation*}
$$

Let $E q .(8) \times\left(a_{t+1}-1\right)+E q .(9)$, we have

$$
\begin{equation*}
\frac{2}{\beta}\left[\left(a_{t+1}-1\right) v_{t}-a_{t+1} v_{t+1}\right] \geq 2\left\langle\mathbf{x}^{t+1}-\mathbf{y}^{t+1}, a_{t+1} \mathbf{y}^{t+1}-\left(a_{t+1}-1\right) \mathbf{x}^{t}-\mathbf{x}^{*}\right\rangle+a_{t+1}\left\|\mathbf{y}^{t+1}-\mathbf{x}^{t+1}\right\|^{2} \tag{10}
\end{equation*}
$$

In addition, Step 2 of FASTA in (3) says that

$$
\begin{equation*}
a_{t+1}^{2}-a_{t+1}=a_{t}^{2} \tag{11}
\end{equation*}
$$

Thus, Eq.(10) $\times a_{t+1}$ with Lemma 1 is

$$
\begin{align*}
\frac{2}{\beta}\left[a_{t}^{2} v_{t}-a_{t+1}^{2} v_{t+1}\right] & \geq 2\left\langle\mathbf{x}^{t+1}-\mathbf{y}^{t+1}, a_{t+1}^{2} \mathbf{y}^{t+1}-a_{t}^{2} \mathbf{x}^{t}-\mathbf{x}^{*}\right\rangle+a_{t+1}^{2}\left\|\mathbf{y}^{t+1}-\mathbf{x}^{t+1}\right\|^{2} \tag{12}\\
& \geq\left\|a_{t+1} \mathbf{x}^{t+1}-\left(a_{t+1}-1\right) \mathbf{x}^{t}-\mathbf{x}^{*}\right\|^{2}+\left\|a_{t+1} \mathbf{y}^{t+1}-\left(a_{t+1}-1\right) \mathbf{x}^{t}-\mathbf{x}^{*}\right\|^{2} \tag{13}\\
& =\left\|\mathbf{u}^{t+1}\right\|^{2}-\left\|\mathbf{u}^{t}\right\|^{2} \tag{14}
\end{align*}
$$

Theorem 2 [Beck and Teboulle, 2009] Let $\left\{\mathbf{x}^{t}, \mathbf{y}^{t}\right\}$ be generated by AGD or FISTA. Then for any $T \geq 1$,

$$
\begin{equation*}
h\left(\mathbf{x}^{T}\right)-h^{*} \leq \frac{2 \beta\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{(1+T)^{2}} \tag{15}
\end{equation*}
$$

Proof 3 According Lemma 2, let $c_{t}=\frac{2}{\beta} a_{t}^{2} v_{t}, b_{t}=\left\|\mathbf{u}^{t}\right\|^{2}$, and $c=\left\|\mathbf{y}^{1}-\mathbf{x}^{*}\right\|^{2}=\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}$. Then Lemma 3 implies $c_{t}-c_{t+1} \geq b_{t+1}-b_{t}$.
Furthermore, let $\mathbf{x}=\mathbf{x}^{*}, \mathbf{y}=\mathbf{y}^{1}$ in (5), then

$$
\begin{aligned}
h^{*}-h\left(\mathbf{x}^{1}\right) & \geq \frac{\beta}{2}\left\|\mathbf{x}^{1}-\mathbf{y}^{1}\right\|^{2}+\beta\left\langle\mathbf{y}^{1}-\mathbf{x}^{*}, \mathbf{x}^{1}-\mathbf{y}^{1}\right\rangle \\
& =\frac{\beta}{2}\left(\left\|\mathbf{x}^{1}-\mathbf{x}^{*}\right\|^{2}-\left\|\mathbf{y}^{1}-\mathbf{x}^{*}\right\|^{2}\right)
\end{aligned}
$$

This indicates $c_{1}+b_{1} \leq c$, where $c_{1}=\frac{2}{\beta} v_{1}$ and $b_{1}=\left\|\mathbf{x}^{1}-\mathbf{x}^{*}\right\|^{2}$. Thus, for any $T>0$, it has

$$
\begin{equation*}
v_{T} \leq \frac{\beta\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{2 a_{T}^{2}} \tag{16}
\end{equation*}
$$

By the induction method, we have justify that $a_{t} \geq \frac{t+1}{2}, \forall t \geq 1$. So,

$$
h\left(\mathbf{x}^{T}\right)-h^{*} \leq \frac{2 \beta\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{(1+T)^{2}}
$$

2 Newton-Raphson Method

2.0.1 Motivation

Think about what GD is? Let us consider the first order Taylor approximation of $f(\mathbf{x}+\mathbf{d})$ around at \mathbf{x} is

$$
f(\mathbf{x}+\mathbf{d}) \approx f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle
$$

We need $f(\mathbf{x}+\mathbf{d}) \leq f(\mathbf{x})$, so the quantity of $\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle$ should be as negative as possible, then

$$
\begin{equation*}
\mathbf{d}_{\mathbf{x}}^{*}=\arg \min \{\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle,\|d\| \leq 1\} \tag{17}
\end{equation*}
$$

Based on Cauchy inequality, it has $\mathbf{d}_{\mathbf{x}}^{*}=-\frac{\nabla f(\mathbf{x})}{\|f(\mathbf{x})\|}$. We generalized this idea to the second-order Taylor approximation of $f(\mathbf{x}+\mathbf{d})$ around \mathbf{x} is

$$
f(\mathbf{x}+\mathbf{d}) \approx f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle+\frac{1}{2} \mathbf{d}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{d}
$$

So the quantity of $\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle+\frac{1}{2} \mathbf{d}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{d}$ should be as negative as possible, then

$$
\begin{equation*}
\mathbf{d}_{\mathbf{x}}^{*}=\arg \min \left\{\langle\nabla f(\mathbf{x}), \mathbf{d}\rangle+\frac{1}{2} \mathbf{d}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{d}\right\} \tag{18}
\end{equation*}
$$

Thus, \mathbf{d}^{*} should be the solution of the following Newton Equation,

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \mathbf{d}=-\nabla f(\mathbf{x}) \tag{19}
\end{equation*}
$$

If $\nabla^{2} f(\mathbf{x}) \succ 0$, then $\mathbf{d}_{\mathbf{x}}^{*}=-\left(\nabla^{2} f(\mathbf{x})\right)^{-1} \nabla f(\mathbf{x})$ is called Newton direction.

2.0.2 Algorithm

The Newton-Raphson Algorithm is

$$
\begin{aligned}
& \mathbf{d}^{t}=-\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{t}\right) \\
& \mathbf{x}^{t+1}=\mathbf{x}^{t}+\mathbf{d}^{t}
\end{aligned}
$$

Actually, in numerical analysis, Newton's method, also known as the Newton-Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. In the optimization community, which root is to find by Newton-Raphson algorithm?

Let us consider the unconstrained optimization problem, and its optimality condition says that the local minimum satisfies $\nabla f(\mathbf{x})=0$. So, we need to solve the equation $g(\mathbf{x}):=\nabla f(\mathbf{x})=0$. How to do? See Figure 1. That is,

Figure 1: Newton-Raphson algorithm

$$
\begin{aligned}
& g\left(\mathbf{x}^{t}\right)+\left\langle\nabla g\left(\mathbf{x}^{t}\right), \mathbf{x}-\mathbf{x}^{t}\right\rangle=0,(\text { Secant Equation }) \\
& \nabla f\left(\mathbf{x}^{t}\right)+\left\langle\nabla^{2} f\left(\mathbf{x}^{t}\right), \mathbf{x}-\mathbf{x}^{t}\right\rangle=0
\end{aligned}
$$

So, $\mathbf{x}^{t+1}=\mathbf{x}^{t}-\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{t}\right)$.
Example 1 Go back to LS problem,

$$
\min _{\mathbf{x}} \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}
$$

The NR algorithm is

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\mathbf{x}^{t}-\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{t}\right) \\
& =\mathbf{x}^{t}-\left(A^{\top} A\right)^{-1} A^{\top}\left(A \mathbf{x}^{t}-\mathbf{b}\right) \\
& =\mathbf{x}^{t}-\mathbf{x}^{t}+\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b} \\
& =\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}:=\mathbf{x}^{*}
\end{aligned}
$$

2.1 Convergence

Theorem 3 Suppose that $f \in C^{2}$ and $\nabla f\left(\mathbf{x}^{*}\right)=0$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succ 0$. In addition, there exsits an neighborhood of $\mathbf{x}^{*}, \mathcal{N}_{\delta}\left(\mathbf{x}^{*}\right)$ such that

$$
\begin{equation*}
\left\|\nabla^{2} f(\mathbf{x})-\nabla^{2} f(\mathbf{y})\right\| \leq L\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathcal{N}_{\delta}\left(\mathbf{x}^{*}\right) \tag{20}
\end{equation*}
$$

then
(1) $\lim _{t \rightarrow \infty} \mathbf{x}^{t}=\mathbf{x}^{*}$ where $\left\{\mathbf{x}^{t}\right\}_{t=1}^{\infty}$ is generated by Newton-Raphson iteration algorithm.
(2) there exists a constant c such that

$$
\left\|\mathbf{x}^{t+1}-\mathbf{x}^{*}\right\| \leq c\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|^{2}
$$

(3) there exists a constant c^{\prime} such that

$$
\left\|\nabla f\left(\mathbf{x}^{t+1}\right)\right\| \leq c^{\prime}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} .
$$

Proof 4 According to the fact

$$
\nabla f\left(\mathbf{x}^{t}\right)-\nabla f\left(\mathbf{x}^{*}\right)=\int_{0}^{1} \nabla^{2} f\left(\mathbf{x}^{t}+s\left(\mathbf{x}^{*}-\mathbf{x}^{t}\right)\right)\left(\mathbf{x}^{t}-\mathbf{x}^{*}\right) d s
$$

it has

$$
\begin{aligned}
\mathbf{x}^{t+1}-\mathbf{x}^{*} & \left.=\mathbf{x}^{t}-\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)\right)^{-1} \nabla f\left(\mathbf{x}^{t}\right)-\mathbf{x}^{*} \\
& =\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1}\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\left(\mathbf{x}^{t}-\mathbf{x}^{*}\right)-\nabla f\left(\mathbf{x}^{t}\right)\right) \\
& =\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1}\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\left(\mathbf{x}^{t}-\mathbf{x}^{*}\right)-\left(\nabla f\left(\mathbf{x}^{t}\right)-\nabla f\left(\mathbf{x}^{*}\right)\right)\right) \\
& =\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1} \int_{0}^{1}\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)-\nabla^{2} f\left(\mathbf{x}^{t}+s\left(\mathbf{x}^{*}-\mathbf{x}^{t}\right)\right)\right)\left(\mathbf{x}^{t}-\mathbf{x}^{*}\right) d s .
\end{aligned}
$$

By the continuity of $\nabla^{2} f$, there exist a constant r such that for any $\mathbf{x} \in(f)$ satisfies $\left\|\mathbf{x}-\mathbf{x}^{*}\right\| \leq r$, then $\left\|\left(\nabla^{2} f(\mathbf{x})\right)^{-1}\right\| \leq 2\left\|\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)^{-1}\right\|$. Thus, when $\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\| \leq \min \left\{\delta, r, \frac{1}{\left.2 L \| \nabla^{2} f\left(\mathbf{x}^{*}\right)\right)^{-1} \|}\right\}$, then

$$
\begin{aligned}
\left\|\mathbf{x}^{t+1}-\mathbf{x}^{*}\right\| & \leq\left\|\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1}\right\| \int_{0}^{1}\left\|\nabla^{2} f\left(\mathbf{x}^{t}\right)-\nabla^{2} f\left(\mathbf{x}^{t}+s\left(\mathbf{x}^{*}-\mathbf{x}^{t}\right)\right)\right\|\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\| d s \\
& \leq 2\left\|\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)^{-1}\right\| \int_{0}^{1} s L\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|^{2} d s \\
& =L\left\|\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)^{-1}\right\| \mathbf{x}^{t}-\mathbf{x}^{*} \|^{2}
\end{aligned}
$$

For the gradient,

$$
\begin{aligned}
\left\|\nabla f\left(\mathbf{x}^{t+1}\right)\right\| & =\left\|\nabla f\left(\mathbf{x}^{t+1}\right)-\nabla f\left(\mathbf{x}^{t}\right)-\nabla^{2} f\left(\mathbf{x}^{t}\right) \mathbf{d}^{t}\right\| \\
& =\left\|\int_{0}^{1}\left(\nabla^{2} f\left(\mathbf{x}^{t}+s \mathbf{d}^{t}\right)-\nabla^{2} f\left(\mathbf{x}^{t}\right)\right) \mathbf{d}^{t} d s\right\| \\
& \leq \frac{L}{2}\left\|\mathbf{d}^{t}\right\|^{2} \leq \frac{L}{2}\left\|\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1}\right\|^{2}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} \\
& \leq 2 L\left\|\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)^{-1}\right\|^{2}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} .
\end{aligned}
$$

Remark 1 (1) $\mathbf{x}^{t} \rightarrow \mathbf{x}^{*}$ is extremely fast, quadratic convergence rate.
(2) We need a very good \mathbf{x}^{0}.
(3) $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succ 0$.
(4) Every step we need compute a Newton equation. When n is really big, we cannot afford the computational complexity.
(5) $f\left(\mathbf{x}^{t+1}\right) \leq f\left(\mathbf{x}^{t}\right)$??? The algorithm is not stable (not decreasing).

In Example 1, we have seen that Newton-Raphson is extremely fast for strongly convex LS problem. Whenever the initial point is close to \mathbf{x}^{*} or not, one can archive the global minimum by one step. In this part, we will discuss the convergence property of NR-algorithm with line search for general α-strongly convex and β-smooth objective function.
NR-Algorithm with line search as follows:

```
Algorithm 1 Newton-Raphson Algorithm with Line Search
    Input: Given a initial starting point \(\mathbf{x}^{0} \in \operatorname{dom}(f)\), a tolerance \(\epsilon\) and \(t=0\). Let \(\lambda_{t}^{2}=\nabla f\left(\mathbf{x}^{t}\right)^{\top}\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{t}\right)\)
    be the Newton decrement at \(\mathbf{x}^{t}\).
    while \(\lambda_{t}^{2} / 2 \geq \epsilon\) do
        Backtracking line search a step size \(s_{t}\) such that
                    \(f\left(\mathbf{x}^{t}+s_{t} \mathbf{d}^{t}\right) \leq f\left(\mathbf{x}^{t}\right)+c s_{t} \nabla f\left(\mathbf{x}^{t}\right)^{\top} \mathbf{d}^{t}\),
        where \(0<c<1\) and \(\mathbf{d}^{t}=\left(\nabla^{2} f\left(\mathbf{x}^{t}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{t}\right)\),
        \(\mathbf{x}^{t+1}=\mathbf{x}^{t}+s_{t} \mathbf{d}^{t}\),
        \(t:=t+1\).
    end while
    Output: \(\mathbf{x}^{T}\), where \(T\) is the last step index.
```

Theorem 4 Suppose that f is α-strongly convex and β-smooth function, and

$$
\left\|\nabla^{2} f(\mathbf{y})-\nabla^{2} f(\mathbf{y})\right\| \leq L\|\mathbf{y}-\mathbf{x}\|, \forall \mathbf{x}, \mathbf{y} \in \operatorname{dom}(f) .
$$

Then, there exists numbers η and γ with $0<\eta \leq \alpha / \gamma$ and $\gamma>0$ such that the following arguments hold:
(1) If $\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\| \geq \eta$,

$$
\begin{equation*}
f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right) \leq-\gamma ; \tag{21}
\end{equation*}
$$

(2) If $\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\| \leq \eta$, then the backtracking line search selects $s_{t}=1$, and

$$
\begin{equation*}
\frac{L}{2 \alpha^{2}}\left\|\nabla f\left(\mathbf{x}^{t+1}\right)\right\| \leq\left(\frac{L}{2 \alpha^{2}}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right) \tag{22}
\end{equation*}
$$

Proof 5 Please see Page 489 of [Boyd et al., 2004].

References

[Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202.
[Boyd et al., 2004] Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
[Nesterov, 1998] Nesterov, Y. (1998). Introductory lectures on convex programming volume i: Basic course. Lecture notes, 3(4):5.

